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Abstract
Purpose Type 2 diabetes (T2D) and low serum concentration of high-density lipoprotein cholesterol (HDL-c) are common 
coexisting metabolic disorders. ABCA1 variants have been shown to be associated to these conditions. We sought to test the 
combined effect of two ABCA1 gene common variants, rs2422493 (− 565C > T) and rs9282541 (R230C) on HDL-c levels 
and T2D risk.
Methods Path analysis was conducted in 3,303 Mexican-mestizos to assess the specific contributions of rs2422493 and 
rs9282541 ABCA1 variants, insulin resistance, waist-to-height ratio (WHtR), and age on HDL-c levels and T2D risk. Par-
ticipants were classified into four groups according to their ABCA1 variants carrier status: (i) the reference group carried 
wild type alleles for both ABCA1 variants (−/−), (ii)  +/–  were carriers of rs2422493 but non-carriers of rs9282541, (iii) 
−/+ for carriers of rs9282541 but not carriers of rs2422493 and (iv) carriers of minor alleles for both SNPs (+/+). Principal 
components from two previous genome-wide association studies were used to control for ethnicity.
Results We identified significant indirect effects on T2D risk mediated by HDL-c in groups −/+ and +/+ (β = 0.04; p = 0.03 
and β = 0.06; p < 0.01, respectively) in comparison to the −/− reference group. Low concentrations of HDL-c were directly 
and significantly associated with increased T2D risk (β = −0.70; p < 0.01). WHtR, male gender, age, and insulin resistance 
were also associated with T2D risk (p < 0.05). There was no significant direct effect for any of the ABCA1 groups on T2D 
risk: p = 0.99, p = 0.58, and p = 0.91 for groups +/–, −/+, and +/+ respectively.
Conclusions The ABCA1 rs9282541 (R230C) allele is associated with T2D in Mexicans through its effect on lowering 
HDL-c levels. This is the first report demonstrating that HDL-c levels act as an intermediate factor between an ABCA1 
variant and T2D.

Keywords ABCA1 · HDL · HDL-c · Hypoalphalipoproteinemia · Type 2 diabetes · rs2422493 · rs9282541

Introduction

Type 2 diabetes (T2D) and low serum concentration of 
high-density lipoprotein cholesterol (HDL-c, i.e., hypoal-
phalipoproteinemia) are very prevalent metabolic conditions 

associated with high morbidity and mortality in the Mexican 
population [1, 2]. Both disorders are strongly influenced by 
lifestyle [3, 4] and genetic factors [5, 6]. Of particular inter-
est is the recognition of genetic variants derived from Amer-
indian ancestry that have a large effect on various metabolic 
traits, including dyslipidemias such as hypertriglyceridemia 
[7, 8], hypoalphalipoproteinemia (HA) [9-11], obesity [12], 
and T2D [13]. Among such variants, the ABCA1 polymor-
phism rs9282541 (R230C), which is almost exclusively pre-
sent in Amerindian and Amerindian-derived populations, 
has been associated with low HDL-c levels [9, 10, 14, 15], 
T2D [13] and obesity [15]. On the other hand, the C to T 
polymorphism at position − 565 (rs2422493) in the ABCA1 
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gene promoter results in decreased transactivation activ-
ity of a reporter gene in vitro and presumably lowers the 
expression of ABCA1 in vivo [16]. In addition, cell lines 
expressing the ABCA1 C230 allele (rs9282541) exhibit a 
cholesterol efflux that is 27% lower than what is observed in 
cells expressing the wild-type R230 allele [14]. These two 
ABCA1 polymorphisms are frequent in Mexicans; rs2422493 
and rs9282541 having minor allele frequencies of 0.5 and 
0.11 [10], respectively.

The ATP-binding cassette transporter A1 (ABCA1) par-
ticipates in the initial synthesis of HDL molecules mainly 
in the liver through binding to the lipid-free apolipoprotein 
A1 [17-19], but it also transfers cholesterol from peripheral 
cells to lipid-poor apoAI [20, 21]. In animal models, it has 
been shown that impaired ABCA1 function leads to β-cell 
dysfunction through decreasing cholesterol efflux [22] and 
contributing to decreased insulin secretion. Epidemiological 
evidence suggests that low HDL-c levels [23-25], as well as 
low HDL-c/apoAI and HDL-c/apoAII ratios are independent 
risk factors for incident T2D (25). Moreover, it has been pre-
viously recognized that HDL and apoAI molecules promote 
insulin synthesis and insulin secretion in pancreatic β-cells 
[26], MIN-6 cells, and rat islet cells [27].

The objective of this study was to elucidate the combined 
effect of two common ABCA1 variants on HDL-c levels and 
T2D risk. Therefore, through a path analysis we tested the 
direct and indirect effects of two common ABCA1 gene vari-
ants, rs2422493 and rs9282541, on HDL-c levels and T2D 
risk in a cohort of 3,303 Mexicans.

Patients and methods

Study group

Mexican-mestizo individuals (with parents and grandparents 
born in Mexico) who were 18 years and older and who had 
participated in at least one of two previous GWAS for tri-
glycerides (GWAS-TG) [7] or T2D (GWAS-T2D) [28] were 
included. Briefly, most of the participants were recruited at 
the outpatient diabetes clinic of the Department of Endocri-
nology and Metabolism of the Instituto Nacional de Cien-
cias Médicas y Nutrición Salvador Zubirán (INCMNSZ) in 
Mexico City. In addition, a cohort of normoglycemic gov-
ernment employees aged 45 years or older constituted the 
control group. The resulting study cohort consisted of 914 
T2D cases and 2,389 control individuals. T2D was diag-
nosed based on American Diabetes Association criteria [29]. 
The Committee of Ethics and the Institutional Review Board 
of the INCMNSZ on human subjects research approved the 
study protocol. This study conforms to the ethical guidelines 
of the 1975 Declaration of Helsinki [30]. All individuals 
provided written informed consent.

Clinical and laboratory analyses

BMI was calculated as weight (in kg) divided by height 
(in  m2), and waist-to-height ratio (WHtR) was assessed 
dividing waist size by height, both measured in cm. We 
included the WHtR because it is a better index than BMI 
and waist circumference (WC) for detecting cardio-
metabolic risk factors linked to central obesity [31, 32]. 
Homeostatic Model Assessment for Insulin Resistance 
(HOMA-IR) was calculated according to the formula: 
fasting insulin (microU/L)*fasting glucose (nmol/L)/22.5. 
Trained personnel measured the weight, height, and waist 
circumference of all participants. The diagnosis of HA 
was considered when women had HDL-c < 1.3 mmol/L, 
and men < 1.04 mmol/L. For biochemical analyses, blood 
samples were obtained after a 9- to 12-h fast. Blood glu-
cose concentration was measured by using the glucose 
oxidase method, and total cholesterol, HDL-c, and tri-
glycerides concentrations were measured using a Synchron 
Autoanalyzer (Beckman Co). LDL-c was estimated from 
total cholesterol as described by Friedewald et al. [33]. 
Genomic DNA was extracted from total blood samples 
using a QIAamp 96 DNA Blood kit, Qiagen. Both ABCA1 
rs2422493 and rs9282541 variants were genotyped using 
Taqman probes. In addition, since all individuals had par-
ticipated in at least one GWAS, the respective principal 
components (PCs) were available for estimating ethnicity.

Statistical analysis

Participants were grouped according to their carrier sta-
tus on ABCA1 variants in such way that four groups were 
formed. The reference group consisted of individuals 
having wild type alleles for both ABCA1 variants (herein 
denoted as −/−). The “+” sign is being used for carriers 
of either one or two of the risk alleles as follows: The  
+/–  group corresponds to individuals are either heterozy-
gous or homozygous for the rs2422493 variant but non-
carriers of rs92822541. Group −/+ includes individuals 
carrying rs92822541 in heterozygous or homozygous 
state, but without risk alleles for rs2422493 variant; and 
finally, the +/+ group refers to individuals carrying both 
rs2422493 and rs9282541 variants in either heterozygous 
or homozygous state.

Demographic and clinical characteristics were 
described and compared between groups. Differences 
were assessed using Mann–Whitney U test (for non-
parametric quantitative distributions in two groups) or 
Kruskal–Wallis (for non-parametric quantitative variables 
distributed in more than two groups) and chi-squared 
test (for differences between proportions). Finally, 
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Dunn–Bonferroni post hoc method was used to correct 
for multiple comparison testing. Genotype frequencies 
of both variants were evaluated. Hardy–Weinberg equi-
librium was determined in healthy controls using chi-
squared tests. Linkage disequilibrium (LD) was assessed 
using r2 statistic.

Because PCs from previous GWAS (GWAS-TG [7] and 
GWAS-T2D [28]) were available and the Native-American 
ancestry percentage of 484 individuals was also known 
(previously obtained by global ancestry calculation), the 
correlation between the first PC of GWAS-T2D and the 
percent of Native American ethnicity was computed. The 
correlation between the first PC of GWAS-TG and the 
first PC of GWAS-T2D was calculated and determined to 
be highly correlated. Thus, through a simple linear regres-
sion model, the values of the PC from GWAS-T2D were 
imputed for those who only had PC from GWAS-TG. As 
a result, a single index of ethnicity was obtained and used 
for adjusting for population stratification.

To assess the direct and indirect effects between 
ABCA1 variants and HDL-c and T2D, path analysis was 
used. Because the mediating variable was not sampled 
under the case–control design, we performed the preva-
lence-weighted approach suggested by VanderWeele and 
Vansteelandt [34] aiming to avoid potential bias estima-
tion. Path analysis is a multivariate statistical method 
consisting of simultaneous regression equations where 
continuous or categorical outcomes may be included. 
This method has been applied in the Framingham study to 
assess the role of genetic variants on metabolic diseases 
[35, 36]. Gender, age, ethnicity, and the ABCA1 groups 
were the independent variables. HDL-c, WHtR, HOMA-
IR and T2D were the dependent variables. A theoreti-
cal path model was specified based on prior findings of 
ABCA1 variant R230C associated to T2D [13]; and of 
previously reported association between the C230 allele 
of the rs9282541 with BMI [14, 15], and insulin resist-
ance with low expression of ABCA1 in visceral adipose 
tissue in humans [37]. Because T2D is a dichotomous 
endogenous variable, Theta parameterization was used 
and bias corrected standard errors were obtained through 
the Bootstrap approach. To increase parsimony, non-sig-
nificant paths were removed. In all cases, and regardless 
of the p value, the assessment of the genetic effects on 
T2D, HDL-c, WHtR and HOMA-IR were always adjusted 
for ethnicity. Furthermore, the direct effects were always 
taken into account for assessing indirect effects. Good-
ness-of-fit of the final model was assessed using indices 
such as the standardized summary of the average covari-
ance residuals [root mean square error of approximation 
(RMSEA)], Comparative fit index (CFI) and Tucker-
Lewis index (TLI). We used Mplus v.8.3 software [38].

Results

Genotype frequencies for both SNPs were in Hardy–Wein-
berg equilibrium (p > 0.05). Genotype frequencies of the 
− 565C > T (rs2422493) SNP in all study subjects were 
as follows: CC 0.268 (886/3303), CT 0.495 (1636/3303) 
and TT 0.237 (781/3303). Allele frequencies were 0.52 
for the C-allele and 0.48 for the T-allele. Regarding the 
genotype frequencies of the R230C (rs9282541) variant 
were CC 0.797 (2632/3303), CT 0.19 (627/3303), and 
TT 0.013 (44/3303). Allele frequencies were 0.88 for 
the C-allele and 0.12 for the T-allele. Both variants were 
in Hardy–Weinberg equilibrium (p = 0.66 and p = 0.41, 
respectively). Importantly, these two ABCA1 variants 
(rs2422493 and rs9282541) are inherited as independent 
linkage disequilibrium blocks r2 = − 0.1.

The description of the main anthropometric and bio-
chemical measurements across the four ABCA1 groups are 
shown in Table 1. Largely, gender and age showed sig-
nificant differences among groups (p = 0.04 and p = 0.05 
respectively). The group −/+ had a predominance of 
males, while individuals in the group −/− were older 
than group +/+. Moreover, HA was significantly higher 
between +/+ vs. +/–  and −/− (71.2% vs. 58.5%, p < 0.001, 
in both cases); thus, carriers of rs9282541 variant have a 
higher HA frequency than non-carriers.

When we compared anthropometric and biochemical 
characteristics according to the number of rs2422493 risk 
alleles (0, 1 or 2 risk alleles), we did not find any clinical 
or laboratory differences (data not shown). In contrast, 
for the three genotype combinations of rs9282541 (CC, 
CT and TT) we observed that, according to the nominal 
p value, HDL-c plasma levels were higher among sub-
jects with the CC genotype compared to those with the 
CT (p < 0.001) or TT genotype (p < 0.001); interestingly, 
concentrations of HDL-c were slightly lower in individuals 
with two risk alleles (TT) in comparison to those carry-
ing only one T allele (p = 0.037). Also, CT carriers were 
younger than CC (p = 0.002) or TT carriers (p = 0.017) 
(Supplementary table).

Population stratification correction

We built a single ethnicity index based on our findings of 
a correlation of 0.83 between the first PC of GWAS-T2D 
and the GWAS-TG, and of 0.91 between the first PC of 
GWAS-T2D and percent of Native-American ethnicity was 
0.91. Thus, the use of the first PC of GWAS-T2D would 
adequately discriminate between American and European 
ethnicity. We included this index in our analyses to control 
for potential confounding due population stratification.
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Path analysis

The hypothesized model fitted the data well (CFI = 1.0; 
TLI = 1.0; RMSEA = 0.0 90%CI (0.0, 0.04) (Fig. 1). After 
removing non-significant paths for improving parsimony, 
the fit indexes of the final model were CFI = 1.0; TLI = 1.0; 
RMSEA = 0.0 90% CI [0.0,0.02] (Fig. 2).

Type 2 diabetes

After adjusting for gender, age, HDL-c levels, WHtR, 
HOMA-IR, and ethnicity, we did not find any direct effect 
of any ABCA1 group on T2D risk: p = 0.99, p = 0.58, 
and p = 0.91 for groups  +/– , −/+, and +/+ respectively 
(Table  2 and Fig.  2). Nevertheless, significant indirect 
effects from group −/+ and +/+ to T2D through HDL-c 
were found (β = 0.04; p = 0.03 and β = 0.06; p < 0.01, respec-
tively). Meanwhile, the indirect effect of group  +/– was 
not significant (β ≤ 0.01; p = 0.92) meaning that people in 
group +/– were similarly prone to T2D as compared with 
the reference group. In contrast, rs9282541 carriers have a 
higher T2D risk through lower HDL-c concentrations than 
the wild-type group (Table 2 and Fig. 2). The difference 
between the indirect effects of −/+ and +/+ on T2D was 

not significant (p = 0.46). However, we found two significant 
indirect effects from WHtR to T2D: one of them through 
HDL-c (β = 0.47; p = 0.02) and the other, through HOMA-IR 
before WHtR (β = 0.20; p < 0.01) (Table 2).

As expected, HDL-c concentrations were inversely asso-
ciated with T2D risk (β = − 0.70; p < 0.01). In addition, male 
gender and age were also significantly associated (p < 0.01). 
The standardized coefficients (βstand) suggest that HOMA-
IR, age and HDL-c concentrations may have the strongest 
effects on T2D risk (βstand = 0.21, 0.20 and − 0.19, respec-
tively) (Table 2 and Fig. 2).

HDL‑c

After adjusting for gender, age, WHtR, HOMA-IR, and 
ethnicity, the direct effect of −/+ and +/+ ABCA1 groups 
on HDL-c concentrations were negative and significant in 
comparison to the reference group (β = − 0.06; p = 0.03 and 
β = − 0.08; p < 0.01, respectively) meaning that carriers of 
rs9282541 variant are likely to have lower levels of HDL-c 
than non-carriers. Insulin resistance measured with HOMA-
IR was negatively associated with HDL-c (β = − 0.03; 
p < 0.01) (Table 2 and Fig. 2). Gender, age, and anthro-
pometry were also significantly associated to HDL-c levels 

Table 1  Clinical and biochemical parameters of the study participants by ABCA1 genotypes

The four studied groups are the wild type genotype (denoted as −/−) in the two variants and the other groups included carriers on either one 
variant (denoted as  +/–  for carriers of rs2422493 but non-carriers of rs9282541 and −/+ in the reverse case) or in both (denoted as +/+)
IQR interquartile range, WHtR waist-to-height ratio, WC waist circumference, BMI body mass index, HDL-c high-density lipoprotein choles-
terol, LDL-c low-density lipoprotein cholesterol, SBP systolic blood pressure, DBP diastolic blood pressure, T2D type 2 diabetes
a −/− vs. +/+, p = 0.035
b −/− vs. −/+, p = 0.009
c −/− vs. +/+, p < 0.001
d −/+ vs.  +/–, p = 0.002
e +/–  vs. +/+, p < 0.001
f n = 2756 patients

Characteristics −/− (667) +/– (1965) −/+ (219) +/+ (452) p value

Male gender, n (%) 274 (41.1) 823 (41.9) 113 (51.6) 186 (41.2) 0.036
Age, median (IQR), years 49 (42–58) 49 (42–57) 48 (40–55) 48 (40–54) 0.047a

WHtR, median (IQR), cm 0.59 (0.55–0.64) 0.58 (0.54–0.64) 0.58 (0.54–0.63) 0.59 (0.55–0.64) 0.059
WC, median (IQR), cm 95 (87–103) 94 (87–102) 94 (87–100) 95 (88–103) 0.124
BMI, median (IQR), kg/m2 28 (26–31) 28 (25–31) 28 (26–31) 29 (25–32) 0.485
HDL-c, median (IQR), mmol/L 1.11 (0.93–1.29) 1.09 (0.93–1.32) 1.06 (0.88–1.22) 1.01 (0.85–1.22) < 0.001b,c,d,e

LDL-c, median (IQR), mmol/L 3.21 (2.63–3.75) 3.16 (2.61–3.78) 3.03 (2.50–3.57) 3.08 (2.58–3.70) 0.082
Triglycerides, median (IQR), mmol/L 2.33 (1.41–3.37) 2.18 (1.32–3.19) 2.10 (1.25–3.12) 2.08 (1.27–2.98) 0.120
Fasting glucose, median (IQR), mmol/L 5.05 (4.61–6.10) 5.05 (4.55–6.09) 5.11 (4.72–6.83) 5.05 (4.55–6.53) 0.331
SBP, median (IQR), mmHg 120 (110–132) 120 (110–130) 120 (110–133) 120 (110–130) 0.269
DBP, median (IQR), mmHg 80 (70–90) 80 (70–85) 80 (70–90) 80 (70–85) 0.114
Hypertension status, n (%)f 129 (23.7) 439 (26.6) 53 (29.4) 96 (25.3) 0.395
T2D status, n (%) 189 (28.3) 532 (27.1) 62 (28.3) 131 (29.0) 0.818
Hypoalphalipoproteinemia, n (%) 390 (58.5) 1149 (58.5) 138 (63) 322 (71.2)  < 0.001
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Fig. 1  Path diagram of the 
hypothesized causal relation-
ships between ABCA1 geno-
types, age, gender, HOMA-IR, 
WHtR, ethnicity, HDL-c and 
T2D. The wild type genotype 
for both variants (denoted 
as −/−) was taken as refer-
ence group; the other groups 
included carriers of one variant 
(denoted as  +/–  for carriers of 
rs2422493 but non-carriers of 
rs9282541), carriers of the other 
variant (denoted as −/+ for 
non-carriers of rs2422493 but 
carriers of rs9282541) or carri-
ers in both variants (denoted as 
+/+). HDL-c high-density lipo-
protein cholesterol, HOMA-IR 
homeostatic model assessment 
for insulin resistance, WHtR 
waist-to-height ratio

Fig. 2  Final path model presenting the causal relationships between 
ABCA1 genotypes, age, gender, HOMA-IR, WHtR, ethnicity, HDL-c 
and T2D. The wild type genotype for both variants (denoted as −/−) 
was taken as reference group; the other groups included carriers of 
one variant (denoted as  +/–  for carriers of rs2422493 but non-car-
riers of rs9282541), carriers of the other variant (denoted as −/+ 
for non-carriers of rs2422493 but carriers of rs9282541) or carriers 

in both variants (denoted as +/+). Solid lines represent statistically 
significant effects; broken lines represent effects falling short of the 
conventional level of statistical significance p < 0.05. HDL-c and T2D 
were controlled by ethnicity. HDL-c high-density lipoprotein choles-
terol, HOMA-IR homeostatic model assessment for insulin resistance, 
WHtR waist-to-height ratio
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(p < 0.05). According to the standardized coefficients, male 
gender has the strongest effect on HDL-c (βstand = − 0.33; 
p < 0.01). The negative direction indicates that in average 

HDL-c concentrations were lower in men than in women. 
The second strongest effect found was for HOMA-IR 
(βstand = − 0.20; p < 0.01), indicating that insulin-resistant 

Table 2  Results of path analysis: direct and indirect effects of ABCA1 genotypes, age, gender, HOMA-IR, WHtR on HDL-c, and T2D

The four studied groups are the wild type genotype (denoted as −/−) in the two variants and the other groups included carriers on either one 
variant (denoted as  +/–  for carriers of rs2422493 but non-carriers of rs9282541 and −/+ in the reverse case) or in both (denoted as +/+)
T2D type 2 diabetes, HDL-c high-density lipoprotein cholesterol, HOMA-IR homeostatic model assessment for insulin resistance, WHtR waist-
to-height ratio
a Principal components from two GWAS were used to estimate ethnicity, discriminating between American and European ancestry
b Reference was taken as the wild-type alleles of both single nucleotide polymorphisms of ABCA1 gene

Variables Direct effects Indirect effects

Standardized Unstandardized p value Standardized Unstandardized p value

Dependent Independent beta beta (SE) beta beta (SE)

T2D Male gender − 0.14 − 0.31 (0.06) < 0.001
HDL-c − 0.19 − 0.70 (0.08) < 0.001
HOMA-IR 0.21 0.13 (0.02) < 0.001
WHtR 0.15 2.28 (1.16) 0.049

WHtR-> HDL-c-> T2D 0.03 0.47 (0.20) 0.022
WHtR-> HOMA-

IR-> HDL-c-> T2D
0.01 0.20 (0.05) < 0.001

Age 0.20 0.02 (< 0.01) < 0.001
Ethnicitya 0.01 0.33 (0.61) 0.588
−/− Referenceb

+/– < 0.01 < 0.01 (0.06) 0.999
+/– —> HDL-c-> T2D < 0.01 < 0.01 (0.01) 0.916

−/+ 0.01 0.06 (0.10) 0.582
− / + —> HDL-c-> T2D 0.01 0.04 (0.02) 0.033

+/+ < 0.01 − 0.01 (0.08) 0.909
+/+ —> HDL-c- > T2D 0.02 0.06 (0.02) < 0.001

HDL-c Male gender − 0.33 − 0.21 (0.01)  < 0.001
HOMA-IR − 0.20 − 0.03 (0.01)  < 0.001
WHtR − 0.17 − 0.67 (0.33) 0.040
Age 0.06  < 0.01 (< 0.01) 0.007
Ethnicitya − 0.03 − 0.25 (0.14) 0.078
−/− Referenceb

+/– < 0.01 < 0.01 (0.01) 0.916
−/+ − 0.05 − 0.06 (0.03) 0.030
+/+ − 0.09 − 0.08 (0.02) < 0.001

HOMA-IR Age − 0.07 − 0.01 (< 0.01) 0.031
WHtR 0.32 7.02 (3.24) 0.031
−/− Referenceb

+/– − 0.02 − 0.07 (0.09) 0.469
−/+ − 0.02 − 0.16 (0.15) 0.264
+/+ 0.03 0.17 (0.13) 0.210

WHtR Male gender − 0.11 − 0.02 (< 0.01) < 0.001
Age 0.20 < 0.01 (< 0.01) < 0.001
−/− Referenceb

+/– − 0.03 < 0.01 < 0.01) 0.217
−/+ − 0.02 − 0.01 (0.01) 0.268
+/+ 0.02 0.01 (0.01) 0.293
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individuals, in average, tend to have lower concentrations of 
HDL-c (Table 2 and Fig. 2).

We also tested indirect effects from genotype groups to 
HDL-c through HOMA-IR or WHtR but none of them were 
significant (data not shown).

HOMA‑IR

We did not find any significant genetic effect on HOMA-
IR among groups (p = 0.47 for  +/–, p = 0.26 for −/ + and 
p = 0.21 for +/+ groups) (Table  2). Nevertheless, age 
(β = − 0.01; p = 0.03) and WHtR (β = 7.02; p = 0.03) were 
associated to insulin resistance (Table 2 and Fig. 2).

WHtR

Regarding WHtR, we did not find any significant genetic 
effect (p = 0.22 for +/–; p = 0.27 for −/+; and p = 0.29 for 
+/+) (Table 2). However, significant effects were found 
for male gender and age (β = − 0.02; p < 0.01 and β < 0.01; 
p < 0.01, respectively) (Table 2 and Fig. 2).

Discussion

To the best of our knowledge, this is the first study testing 
the combined effect of rs2422493 and rs9282541 ABCA1 
variants on HDL-c plasma levels and T2D risk. The pro-
moter variant rs2422493 presumably causes a decreased 
transcriptional activity of the ABCA1 gene in vivo, as shown 
through reporter gene studies in vitro. In atherosclerotic 
plaques, carriers of the T allele have lower ABCA1 expres-
sion as demonstrated by Kyriakou et al. [16]. However, con-
troversial results have been published regarding the effect 
of rs2422493 variant on HA. In the present study, neither 
HDL-c levels nor the HA frequency showed differences 
between carriers and non-carriers of rs2422493 variant, 
supporting the findings of published studies [16, 39], that 
included cohorts of White, Chinese, African-American and 
Hispanics [40]. In contrast, an Iranian study found that T 
carriers had a higher risk for HA, with lower HDL-c levels 
than the non-carriers [41]. The role of the rs2422493 SNP 
has been studied beyond the lipid profile, especially for car-
diovascular disease. For instance, the presence of the T allele 
in − 565C > T was associated to the development [42] and 
severity of atherosclerosis [43], as well as to coronary artery 
calcification [40].

Interestingly, we found a trend towards lower HDL-c 
when the four studied groups were analyzed, decreasing 
from the wild type genotype at both SNPs (−/−), carriers for 
the rs2422493 (+/–), carriers for rs9282541 (−/+) to carriers 
of both SNPs (+/+). Nevertheless, when we compared the 

direct effects on HDL-c between −/+ and +/+ groups, we 
did not find a significant difference. Moreover, the indirect 
effects of these groups on T2D through HDL-c were not 
statistically different, suggesting that the effects observed 
on HDL-c levels and on T2D risk are mainly driven by 
the R230C variant. Accordingly, when we analyzed car-
riers vs. non-carriers of rs9282541-T separately, we found 
that the direct effect on T2D was not significant (β = 0.004; 
p = 0.94), but the indirect effect through HDL-c was signifi-
cant (β = 0.05; p < 0.001), corroborating our original results. 
This is in line with previous findings showing that the C230 
allele of ABCA1 is associated with increased risk for low 
HDL-c concentrations [10, 14], and the prevalence of HA 
among C230 carriers is greater than in non-carriers [10].

In the present study, we did not find a significant direct 
effect of any of the genetic groups on T2D. Similar results 
have been published previously for the rs9282541 vari-
ant. Miranda-Lora et al. did not find an association of this 
SNP with T2D in Mexicans even after adjusting for known 
risk factors [44]; neither did Campbell et al. in adults from 
Colombia of Native-American ancestry [45], nor Haghvirdi-
zadeh et al., among Malaysians [46]. In contrast, Villarreal-
Molina et al. identified a significant association between 
carriers of rs9282541 and early-onset T2D (≤ 45 years) in 
Mexican individuals, but such an association was lost in 
late-onset T2D group [13]. In the present study, we sought 
to systematically investigate the relationship between two 
ABCA1 functional variants and T2D risk, as there are some 
conflicting results, mainly for the role of the R230C on T2D, 
possibly derived from the limited samples sizes used in pre-
vious studies [13], differences in the methodology to assess 
ethnicity, and possible influence of the functional variant 
− 565C/T on T2D risk when present in combination with the 
R230C variant. Our results show for the first time, that the 
effect of R230C on T2D risk is indirect and through lower-
ing HDL-c levels, a finding supported by a path analysis 
performed in a large cohort using robust methodology to 
assess and adjust for ethnicity in Mexican mestizos. Inter-
estingly, when we assessed the direct and indirect effects of 
the analyzed variants according T2D age of onset we did not 
find any significant effect.

Importantly, we also tested indirect effects from all 
genetic groups to T2D through either WHtR or HOMA-IR 
but coefficients were not significant.

Our results suggest that the rs9282541 variant; regardless 
of rs2422493 genotype, increases T2D risk through lower-
ing HDL-c levels. To the best of our knowledge, this is the 
first report on HDL-c concentrations as an intermediate risk 
factor between a functional ABCA1 gene variant and T2D. 
This is in line with previous epidemiological studies that 
have identified HDL-c levels as a risk factor for T2D [23-25, 
47]. According to our path analysis, WHtR has a direct and 
positive effect on T2D risk and insulin resistance (calculated 
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by HOMA-IR), and a negative effect on HDL-c, however 
neither of the studied ABCA1 variants had any effect over 
WHtR. While contradictory association of the R230C vari-
ant has been reported with obesity (as determined by BMI), 
where some studies reported significant association [15], 
while other studies did not [48], in the present study we 
used WHtR instead of BMI, as it has been shown a better 
index associated with cardiovascular risk factors in different 
populations [31, 32], including Mexicans [49].

During the last years, in vitro, animal and clinical studies 
have uncovered a broad range of HDL actions contribut-
ing to the pathophysiology of T2D. Different studies sug-
gest that lowering ABCA1 activity leads to impaired β-cell 
function [22, 50]. HDL may raise insulin secretion through 
an increase in cholesterol efflux, as has been proposed by 
Brunham et al. for the in vivo model of ABCA1 inactiva-
tion [51]. ApoAI and apoAII are considered two of the main 
components of the protein portion of HDL molecules which 
increase β-cell insulin secretion [27], presumably by two dis-
tinct mechanisms, the first one under high-glucose concen-
trations within the classical glucose-dependent metabolism 
pathway [27], and the second one, through a heterotrimeric 
G-protein-cAMP-protein kinase A-FoxO1-dependent mech-
anism [52] and the modulation of endoplasmic reticulum 
stress in β cells [53]. Furthermore, in a clinical trial using 
an infusion of reconstituted HDL (rHDL) in patients with 
T2D in a double-blind, placebo-controlled study, after four 
hours, plasma glucose levels decreased in rHDL group by 
two mechanisms, the first one through increasing plasma 
insulin levels, with higher β-cell function (evaluated by 
homeostasis model assessment beta cell function index), and 
the second one through the activation of AMP protein kinase 
in skeletal muscle [54]. Thus, the improvement of β-cells 
function through HDL can be observed in both in vitro as 
well as in vivo studies.

Our study identified carrier status of the rs9282541 poly-
morphism, male gender, insulin resistance, high WHtR, and 
advanced age as independent risk factors for low HDL-c 
plasma concentrations in Mexicans. In addition, for T2D 
we found HOMA-IR, age and HDL-c concentrations having 
the strongest effects on T2D risk, while indirect effects from 
WHtR to T2D were also identified, one through HDL-c and 
the other through HOMA-IR. However, when testing indi-
rect effects from all ABCA1 genetic groups for T2D through 
either WHtR or HOMA-IR, coefficients were not significant. 
Therefore, it will be of interest to test whether HDL modi-
fies insulin secretion directly and to what extent the protein 
and/or lipid fraction of the HDL molecule or its subfractions 
influence insulin secretion and/or β-cell protection.

In conclusion, the present study shows the association 
between rs9282541 ABCA1 gene variant and T2D risk, 
through lowering HDL-c concentrations. These results indi-
cate that ABCA1 functional variants might act as a heritable 

risk factor for T2D in Mexicans, through influencing HDL-c 
levels, putatively affecting cholesterol efflux and glucose 
homeostasis.
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